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By Melvin S. Feder and Richard Hood

SUMMARY

The general form of transfer functions for a turbojet engine
with tall-pipe burning wes developed and the relations among the
variables in these functions were foundi from the tramsfer functions
and from engine thermodynamics. By means of these relatlons, the
dynamic characteristics of the engine can be found from steady-
state date and one transient reletion.

The results of this analysis showed that iIf a step change in
engine fuel flow causes the initial value of turbine-outlet tem-
perature to be greater than the final value, a step change in
exhaust-nozzle area or tail-pipe-burner fuel flow willl cause the
initial value of turbine-outlet temperature to be less than the
final value, and conversely. Schedules that maintain constant
engine speed. and turbine-outlet temperature for a range of tall-
pipe conditions and constant engine speed for & range of exhaunst-
nozzle areas were explicitly defined in terms of steady-state data.

The results, when applled to the design of a noninteracting
control system, gave the form of all the required control fume-
tions and showed that all but one of the combrol functions can be
determined from steady-state engine data.

INTRODUCTION

The application of tall-pipe burning to turbojet engines has
become increasingly important in improving the performance and the
effectiveness of this type of alrcraft power plant. The addition
of the tail-pipe burner to the turbojet engine, however, increases -
the camplexity of the control problem because of the additional
degrees of freedom possessed by the engline and because both engins
speed and temperature must be accurately controlled to obtaln
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meximum engine performance with safe engine operation. Further-
more, the action of one control variable during the transient state
causes changes in the other variables.

The firat basic problem that must be solved before control
syntheslis can proceed 1s that of determining the dynamlc character-
istics of the engine. Accordingly, an analysis of the dynamic
behavior of the turbojet engine-with tail-pipe burning was made atb
the NACA lewis laboratory and is presented herein.

In references 1 and 2, it is shown that the dominant dynemic
characteristics of turbojet and turbine-propeller engines, respect-
ively, may be expressed in terms of the slopes of engine-speed
torque curves, which are derivable from engine performance data.
It follows, as shown in references 1 and 2, that the engine proc-
esses can be considered quasi-static, which implies that a thermo-
dynemic process during transient conditions follows the path of
equilibrivm-state points. Thermodynemic relations that are valild
for steady-state engine operation can therefore be extended to the
transient state. Thermodynamlc relations based on this result are
used in reference 3 to determine the effect of the primary engine
variables on the dynamic behavior of a turbojet engine with a
centrifugal-flow compressor.

In the present investigation of the dynamic behavior of a
turbojet engine with taill-pipe burning, the general form of the
engine transfer functions are developed and relations among the
coefficients and the time constants are derived from the transfer
functions and from thermodynamic relations for the engline. The
engine is considered a linear system in which incremental changes
from steaiy-state operating conditions are considered.

The relations among the coefficlents and the time constants
are used to determine the indicial response characteristics of the
engine and the analysis is then applied to scheduled and noninter-
action controls. '

ANALYSIS

Gensral Form of Engline Dynamics

The development and the data presented in reference 1 for a
turbojet engine and in reference 2 for a turbine-propeller englne
show that, at close-to-equilibrium operating conditions, unbalanced
torque can be expressed as a function of the engine speed and the

————— ————— -

$9¢t



VIET

NACA TN 2183 3

engine independent varisbles. For & turbojet engine with tall-pipe
burning operating at a constant ram pressure ratio and altitude,

1t therefore follows that unbalanced torque can be expressed as &
function of the engine speed and the engine independent variables
in the following mamner: (A1l symbols used in this report are de-
fined in appendix A.) .

Q= F(N, Fy, 4 Fy) (1)
also .
Q = I D(aN) (2)
Equation (1), when expanded and linearized around steady-state
operating points and combined with equation (2), leads to the
trangfer function for the response of engine speed to changes in

the independent variables. This expression, which is developed in
appendix B, is

N D+l Fy TD+l A  TD#L Fy

(3)

As shown In appendix B, the response of turbine-outlet tem-
perature to changes in the independent variaebles is given by

. ATz T 1D+l b AF e T 2D+l AA T 3D+l AF-I-'
= +

=24 b 4
T, T+l L F, TD#l 2 A D4l O Fy (4)

The symbol A 1indicates incremental deviations from steady-state
values. The variables F,, A, and Fy, which appear in the
denominators, are the steady-state values. Thus, the term AN/N,

for example, 1s the relative or percentage chenge in engine speed. -
The variables have been placed in this dimensionless form to make .
them conslistent with the thermodynamic development to follow.

From equilibrium conditions (D—>0) and the principle of
superposition, the coefficients &; through bz are shown in
appendix B to be proportional to the slopes of steady-state engine

operating curves. These coefficients are defined in the following
table:

PP, e el - — ——— -
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Coefficient |Definition |{Variables
of constant
coefficient
AN /AF,
a _ ) — A, P
1 N Fe y *%
AN /AA
a2 %/ & Fos Fy
AN /AFg
—_—f — P A
a3z v/ ¥y Y
AT AF
by 2/ -2 1A ¥
Tz Fe
AT, /AA
b2 /) & For Fy
AT, /AR ,
"3 5,/ 7 | o*

The engine time constant T in equations (3) and (4) is a
characteristic time in the transient solution of the homogeneous
equations and can therefore be considered as the englne time con-
stant when the engine is displaced from equilibrium and then re-
leased (with all the independent variables fixed). The significance
of the time constants T,;, T,, and Tz may be illustrated by di-

viding equation (3) by equation (4) after the response of N and T,
to the same forcing function is considered. For example, the response
of N to Tz at constant A and Ft is
AN 1 & AT

= (5)

N T D#lby Ty

Thus, T3 1is the engine time constant at constant Ty, 4, and
Fy. The engine time constants T, and Tz may be defined in a
similar manner. The definitions of the engine time constants are
presented in the following table:

o rm— - — e
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Engine | Variables
time congtant

constant
T Fos A, Fy
i1 T2y &, Fy
Ty Ty, Fy» F,

1'3 Tz, Fe, A

Equations (3) and (4) present the general form of engine
dynamics for a turbojet engine with tail-pipe burning, because, as
shown in appendix B in the discussion of equation (Bl3), equa-
tion (4) will be of the same form for any dependent variable.

It also follows that the form of eguations (3) and (4) is general
for other engines in addition to turbojet engines with tail-pipe
burning. For example, for the turbine-propeller engine, blede
angle cen be substituted for A in eguations (3) and (4) and Fy
vanishes. The time constants and the coefficients can then be
defined in the manner previously described.

A relation among the coefficients and the time constants in
equations (3) end (4) is developed in appendix B. This relation
is .

by bz b3

= (14-1T) = — (T5~7) = = (1z-7) (s)
1 2 3

& 82 8 ¢

Because of the general form of equations (3) end (4), the relations

in equation (6) hold for other engine types beside an engine with

tell-pipe burning, and can be used by properly defining the time

constants and the coefficients.

Equetions (3), (4), and (6) ere developed without cohsidering
engine thermodynamice. In the analysis that follows, engine ther-
modynamics will be used to develop relations among the time con-
stents and the coefficients in equations (3) end (4), in addition
to the relation presented in equation (6).

Engine Thermodynamics
If the engine processes are considered guesi-static, thermo-

dynamic relations that hold in the steady state can be extended to
the transient state. Because unbalanced torgue is a small difference
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between two large members, only these thermoiynamic expressions
that are precise and independent of englne efficiencles will be
used. These expressions are the heat-balance eguation a.nd. the con-
tinuity eguation.

Engine and tall-pipe equations. - For a turbojet engine, the
heat-balance equation for the engine is .

F

e ON
B, = —==< 4+ Ho - H 7
© Wgqg Wy 2 1 (7)

where QN/W, 1is the additional factor introduced by consideration
of nonequilibrium conditions.

The heat balance for a tall-pipe burner i1s

By = ~=H5 -H (8)

a.

The symbols Hg and H; are introduced to make the equations
that follow more compact. ’

From the continulty of flow and the definition of Mach number,
it follows that the gas flow 'bhrough the exhaust nozzle 1s

38
(9)
\ch_

Differentiation and linearization of equations. - If altitude
and rem pressure ratlo are assumed constant and if specific heat
is assumed constant for differential chenges in the variables,
equations (7) to (9) can be differentiated to give the following
expressions :

Equation (7) becomes

d._Fl.e__iE_.lv_dq_l_Fﬁdf.z_ (10)
F, W, F, E, Ty -

ik L g e (11)

v r———Rrey = A AP = et

1364
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If the tail-pipe-burner pressure ratio is assumed constant,

E_?E = d&. (12)
PZ P3

Differentiation of the continuity equation yields

dWe, g4 4Pz 14Tz (dPs dP3\|3 (3
—e 4, 35 _1-3, - L g S (13)
Wo A B3 2T5 " \P3 P3/|73\M2

A detailed development of equations (10) and (13) is presented in
appendlix B. ' -

The term dps/ps in equation (13) can be ogitted. because,
for constant altitude and subsonic flow in the exhaust nozzle,

there is no change In static pressure, andi for sonic flow the last
torm in the equation is zero.

Equations (10) to (13) are in differential form. IPf it is
assumed that the relations among the varisbles in eguations (10)

to (13) apply for incremental changes from steady-state conditions,

the variebles in these equations willl be of the same linear form
as those in equations (3) and (4). Thus, eguation (10) can be

congsidered as
AFe AWy L o2 ATz
Fe Vg

14
5, T (14)

=X aq
Fe

In this expression, AQ is the difference between the final and

the initial unbalanced torque; therefore, because Initial condi-

tions are steady state, the initial unbalanced torque is zero and
AQ, is equal to Q. In a similar mammer, equations (11) to (13)

cen be considered in terms of incremental chenges in the variables.

Equations (11) to (13) can be combined to eliminate dPz and
aTz. If thege menipulations are performed and incremental changes
from steady-state condltions are considered, the following equation
results:

Hy \ AWg AP, AHp | pn  Hp ATy
<l-——>——-= l-l-m)'——-——+[—A--'2-H—3-£-b—:| (15)
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whers

(The last two terms in equation (15) are bracketed because of ref-
erence to them in the rest of the report.)

In general, the term AW,/M, in equations (14) emd (15) is a
Punction of engine speed end compressor-inlet and -outlet condi-
tions. If an axial-flow compressor is assumed, however, the air
flow may be approximated es a function of engine speed alone;
therefore

Awa AN
—_— Yt = 16
Wgy & N ( )

- awy /W, '
where W,' = which is rtional to the slope of the
a —7—dN T’ propo! P ,
steady-state relation between engine speed and air flow.

In the thermodynamic developmsnt, the varisbles have thus far
been placed in the seme form as those in the engine transfer func-
tion (equations (3) amd (4)). In oxrder to obtain engine transfer
functions expressed in operational form similar to equations (3)
and (4), equations (14) to (16) are combined with one another and
with equation (2).

Trensfer functions. - Equations (14) to (16) cannot be used
to completely describe the engine in terms of the independent vari-
ables because AP, which appears only in equation (15), cannot be
eliminated Prom these expressions. A complete description of the
engine would therefore require an independent expression for Pa.

A physical consideration of the engine shows that Pz can be
expressed as & function of N, Fg, and Tp. Because this func-
tional relation does not contain A or Fi, &nd because the vari-
sbles AA and APy appear only in equation (15) and not in equa-
tion (14) or (16), these variasbles will appear together only in
the menner indicated in the bracketed term of equation (15). The
engine time constants involving either of these variables are
therefore equal, and relations among the coefficients in the trans-
fer functions can be found in the following manner:

1364
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For convenience, eguation (3) can be rewritten as

AN 1 8Fg 83 1ap 83 AFy
T oI AF, oA ta iy (27)

and from the discussion of equation (15), eguation (17) becomes

AF AP,
—— g 1 al ) + 9'2 % - E'—b-' "_'1';' (18)
N TD+l Fe TD+1 | A 2Hz Fy
therefore
- R T
ap 2Hg

Also, as shown in appendix B, the transfer funoction for the
response of N to Fy and T can be found by combining equa-
tion (14) with equations (2) and (16) to eliminate AQ amd AW,/W,.
This relation is

AR = 1 A_Fﬂ - 2 fﬁ) L (19)
N ToD+l \F, H, Tz / Wa'
where, as shown in appendix B,
Ta |=T3 = (20)
Fo Wy'

Thus, from the thermodynamic development, the tramsfer function
for the resporse of N +to changes in Fy and Tp 1s precisely
defined In terms of stédedy-state varisbles.

Equetions (18) and (19), when combined to eliminate AN/N,

glve the following tramnsfer function for the response of T3 to
changes in the independent variables:

T-a1 Wa' To
AT, [(T;l_‘%?_-)n +1] [(l"a'l wa.')ne] AFg

T, T TD+L Hp Fq

(21)

a, W' B, T,D+l [A_A_ _ E_?_A_B:E:l

Ho TD+1 A 2Hz Fy

e s emmemee s eeim emwm— e mam o T — e oA e e dEn - —— = - = - —— e emmm -
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and equation (4), rewritten in this form with T, equal to Tz, 18

(22)

AT T+l AR ToD+\[ pa D3 APy
bl + bz 1 + =
T2 TDaL L ™LA T bp By

Equations (18) and (19), when combined to eliminate AR, [Fg,
give the following transfer function for the response of N to Ty,
A, and Pg:

AN 1 1 alﬂzATz+az[A& By 'AFt]

1364

N T-ay Wy' Ty l-a) W' | Ey Ty A ZH; Wy
——=—=D+1
1-8.1 Wa'

' . (23)

. Equations (18), (19), (21), and (23) are transfer functions
that describe the engine dynamics in terms of a minimum of required
data.

Relations among coefficients and time constants. - Equa- -

tions (3) and (4) have been rewritten, as equations (17) and (22),

to show relations among the coefficients and the time constants.
Bquations (21) and (22) are equal to one snother and involve the

same independent variebles; corresponding terms are therefore

equal. A similar correspondence exists between the terms of equa-

tions (17) and (18). The following relations therefore exist

between the time constents end the:coefficlents:

S | We' T2 D
1- l-a.l Wa'

bl = (l-al Wa') z—: k

bz by He (24)
== —

a5 & H

8g by  2Hg Y,

and (repeated for convenience) the relations given in equatlons (6)
and (20)
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b b. b
;} (T = ;-:- (TZ-T)'= ;i 6z-1) (6)

Ty =Tz = (20)

Fo Wa'

Equations (6), (20), and (24) summerize the relations thet
have been developed among the time constants and the coefficlents.

Bquation (6): is not an independent expression, but can be
developed from equations (20) and (24) and is consistent with them.
Bquation (6) is presented beceuse, as indicated in the discussion
of the equation, the relation 1s of a general nabure. ’

RESULTS AND DISCUSSION
Engine Dynemic Characteristics

The transfer funotions of the engine are of a form for which
apecific dynamic characteristica can be obtalned. One such dynamic
‘characteristic thaet is useful in controls analysis is the response
of a system to a step input (indicial response). Another import-
ant characteristic is frequency response.

The transfer functlons of the engine are of two general forms,
vhich are

AY _ oD+l AX

A Z e 2= 25

Y pDel - X (25)
and, If o 1is zero,

AY 1 AX

== c == 26

Y pBD+l X (26)

Inasmuch as the properties of these transfer functions are well
known, only the response of the functions to step changes in the
independent variables wlll be dlscussed In detall.

Indicial response. - For step changes in the independent var-
iables, transfer functions of the form of equations (25) and (26)
lead to exponential curves similar to those presented in figure 1.

[R e e e - .- -— - o e g W gt . = = =
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Final equilibriwm conditions for a step input in tl'w independ -
ent variables can be found from equations (25) and (26) by allow-

ing D +to epproach zero and are ¢ %, &3 shown In figure 1.

Initial conditions for a step imput can be found from these equa-
tions by allowing D to approach o«. Thus, for transfer func-
tions of the form of equetion (26), the indicial response will be
as shown in figure 1(a), where the initial response to a step
input is zero. If aff >1 in the transfer functions of the form
of equation (25), the initial.value of the dependent variable will
be greater than the final value and the indicial response will be
as shovn in figure 1(b). Similarly, if o/ < 1, the initial
value of the dependent variable will be less than the final value
and the indicial response will be as shown in figure 1(c).

The coefficient c¢ In the transfer functlons is a scale fac~
tor that could be incorporated in the ordinates of the curves of
figure 1. In the general case, the coefficient ¢ can be posi-
tive or negative and the ordinate can be Interpreted consistent
with the sign on this coefficlent. '

The transfer funoctions of the engline, as derived in the pre-
vious section, can now be Inberpreted ln terms of the curves of
figure 1. From equations (3) and (4), the initial and finel val-
nes of the depenient varisbles for step chenges in the indépendent
variables can be found in the menner discussed for equations (25)
and (26). The results of this procedure are presented in the fol-

lowing table:

Step chenge|Variables| Response of Response of

in constant |engine speed |turbine-outlet
_ temperature

Initial|Final |Initial |Final

Yalue |valne { valuve value
AF, AFg [Ty AFg AFg
—_— A 0 —— —Iby =—
T s Fg R by o L
AA AA |T2 AA AA
-_— — == Do — |bo —
AFy AFg (T3 AFg| ARy
Fy_ Fos 4 O |sm TSR [5F

This table shows that the indicial response of engine speed
+o changes in the independent varisbles wlll be of the form given

1364
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in Pigure 1(a). The indicial response of turbine-outlet tempera-
ture to changes in the independent variables will be of the form
shovn in figure 1(b) or 1(c), depending upon whether the ratio of
the time constants 1s greater or less than 1.

In figure 1, no consideration was given to the possibllity of
negative values of a«. For o to be negative, T3, T2, or T3
must be negative. From equation (20), however, T2 or T3 will
not be negative unless Wy' is negative; W,' is proportional to
the slope of the steady-state relation between air flow and engine
speed end, because these variasbles increase together, W' will
be positive.

The first of equations (24) indicates the possibility of negative

values of 'rl. Negative values of 'rl occur if an Iincrease Iin en-

gine fuel flow glves a reduction in the steady-state value of turbine-
outlet temperature. This possibility exists only near idling engine
speed when the coefficient by , which is proportional to the steady-

state relation between turbine-outlet temperature and engine fusl
flow, may be negative. In the normal engine operating range, Ty

wlll therefore be positive.

The relative values of the time constants are of interest,
because, as previously explained, the ratios of the time constants,
as compared with unity, determine whebther the initial value of the
indicilal response 1ls greater or less then the final value. Infor-
mation concerning the ratios of the time constants can he obtained
from a consideration of equations (24).

The first of equations (24) may be rewritten as

T -8 T2

1 &
1 l-ey W' 5 (27)
T l-a; Wg'

As hes been explained, Wg' 18 positive. The cosfficient a3,
which is proportional to the slope of the steady-state relation
between engine speed and engine fuel flow, is also positive. XEgua-
tion (27) therefore shows that if

.
—]=> 1
T
then

—_—< 1

— — -
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or conversely, if

then

Therefore, as shown in the discussion of figure 1 and the
preceding table, it can be concluded that If a step change in
engine fuel flow causes the initlal value of turbine-outlet tem-
perature to be greater than the final value, a step change in
oither exhaiist-nozzle area or taill-pipe-burner fuel flow willl cause
the initial value of turbine-outlet temperaturs to be less than
the final value. Oonversely, if a step changs in either exhaust-
nozzle area or tail-pipe-burner fuel flow causes the initial value
of turbine-outlet temperature to he greater than the firal value,
a step change in engine fuel flow will cause the initial value of
turbine-outlet temperature to be less than the final value.

The discussion of indicial response can be interpreted for
inputs other than a step input. For example, for the frequency-
response characteristic, if T,/7> 1 there will be a phase lag
between input and output amd, conversely, if T31/T< 1 there will
be phase lead between input and. output. It therefore follows for
a turbojet engine with tall-pipe burning for steady-state sinusoidal
inputs that, if turbine-outlet temperature leads engine fuel flow,
this temperature will lag elther exhaust-nozzle area or tall-plpe-
burner fuel flow or, conversely, if turbine-outlet temperature
lags engine fuel flow this temperature will lead elther exhaust-
nozzle area or tall-pipe-burner fusl flow.

Response for other engine types eand other variables. -
As explained in the discussion of equations (3), (4), end (6) in
the section ANALYSIS, these equations can be extenied to include
dependent varisbles other than turbine-outlet temperature and
engine speed for a turbojet engine with tall-plpe burning, or may
be extended tp other engline types.

Equation (27) applies for a turbojet engine with an axial-
flow compressor and the results regerding indicial response apply
only to such an engine. The sams results may be obtained from
equation (6), which holds for an engine with any type of compressor,
if, from a physical consideration of the engine, positive or
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negative signs are applied to the coefficients in this equation.
As has been explained, the coefficient aj 1is positive and, in

general, by 1s also positive. From logic similar to that used
to determine these signs, it is seen that ap, is positive, by,

is negative, 8z is negative, and 'b3 is positive. With these
signs applied, Squation (6) becames '

by by . b3
— (T -T)::: — (T-T)= —
2 . |a5

(1-75) (28)

Equation (28) shows that if %/T >1, then T3z/T< 1 or
T3/t < 1, or conversely. The conclusions previously reached con-
cerning indiclal response and frequency response therefore apply
to all engines with tall-pipe burning.

Equation (6) may be applied to engines other than a turbojet
englne with tail-pipe burning. For example, for the turbine-~
propeller engine, propeller-blede angle can be substituted for
exhaust-nozzle area in equations (3) and (4). (The tail-pipe-fuel-
flow term vanishes.) If the coefficients and the time constants
are redefined, equation (6) can be used to determine whether the
ratios of the time constants (T1/T and T5/T) are greater or
less than 1. From a congiderstion of the steady-state character-
istics of the turbine-propeller engine, it can be seen that (con-
sidering corresponding coefficients) a3, b1, and bz are posi-
tive and a2 1s negative. With these signs appllied, an egquation
similar to equation (28) is obtained for the turbine~propeller
engline. Therefore, for the turbine-propeller engine, 1f a step
change In engine fuel flow causes the initial value of turbine-
outlet temperature to be greater than the final value, a step
change In propeller-blade angle will cause the initial value of
turbine-outlet temperature to be less than the final value, and
conversely. )

Unpublished engine data show, in general, that for a step
change in engine fuel flow the initial value of turbine-outlet
temperature will be greater than the final value and, therefore,
that for step changes in the other Indepenient variables the ini-
tial value of turbine-outlet temperature will be less than the
final value.

General Control Applications

The form of the engine transfer functions (equations (3) and
(4)) can be directly used in setting up any general conbrol

— e a et e e e s e R i e S e ——
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configuration. For this purpose, it 1s necessary that the dynamioc
characteristics of the engine be known.  Equations (6), (22), and
(26) can be used to determine much of the required information.
These equations show that with either of the engine time con-
stants T or T; determined from engine dynamic data, the dynamic
characteristicas of the engine can then be described in verms of a
minimom of steady-state data. These dynemlic characteristics can
then be used in the synthesis of controls. Examples of the pro-
cedures ani the techniques used. in control synthesls are presented
in references 4 and 5. The utility of- the analysis presented
herein, however, will be illustrated by applying the analysis to
scheduled and noninteraction controls.

Scheduled Controls

Steady-state conditions for the turbojet engine with tail-~
pipe burning are determined by specific settings In the independ-
ent variables. It follows that, with one variable constant,
unique relations exist between -the two remaining variebles for a
gliven steady-state condition, It is on this basis that scheduled
controls are possible for such an engine.

Relation between A and Fi. - From an operational viewpoint,

1t 1s desirable to operate an englne with tail-plpe burning at maxi-
mm englne speed and temperabture over a range of tail-plpe-burner
fuel Flows and exhaust-nozzle areas. A schedule between exhaust-
nozzle area and tail-pipe-burmer fuel flow that accomplishes this
aim is explicitly defined in equations (18) amd (23) by the brack-
eted term, which includes these variables. This relation is

AA By AFg (29)

AT Fy

As is expected, for steady-state engine operation,exhaust-
nozzle area and tall-pipe-burner fuel flow act in a simllar, but
opposite, manner. At constant engine fuel flow, the relation
between exhaust-nozzle area and tall-pipe-burner fuel flow that
maintains steady-state conditions is given by equation (29) and
may be used ag a basis for a scheduled control.

Relatlion between T, and F,. - As 1is expected, a relation
between turbine-outlet temperature end engine fuel flow exists
that maintains constant engine speed. This relation 1s defilned in
equation (19) amd is
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9_F.°_= .H_zfl_z. (30)
Fe H T2

Equation (30) can be used as & basis for a scheduled control
that maintains constant engine speed for a range of exhaust-nozzle
areas. Such a control is of interest for engine operation when a
variable-area exhaust nozzle is used as & means of improving the
thrust~control characteristics of the engine. The schedule in
equation (30) follows directly from the heat-balance equation for
the engine and, in a sense, is a restatement of it.

The schedules presented in equations (29) anmd (30) can be
used in closed-loop control systems in which error correction is
applied only when the controlled variables deviate small amount
from the called-for conditions. )

Noninteraction Controls

The utility of the analysis will now be illustrated by apply-
ing the analysis to noninteraction controls. In reference 6, the
operational form for the engline amd control characteristics is
used both diagremmatically end algebraically to set up a general
control configuration, to solve for. the conditions required of the
controllers, to eliminate interaction among the controlled varia-
bles, and to £ind the controller operational functions that glve
any deslred system response action.

The problem of satisfactory control of the turbojet engine
with tall-pipe burning involves the problem of interaction and mul-
tiple control because there are at least two degrees of freedom,
or two englne variables, that cen be simultaneously controlled.
This interaction refers, in general, to the effect of one control
loop on another control loop.. In reference 6, that type of non-
interaction ls attained whereby any controlled:variable setting
affects only its corresponding conbtrolled variable and no other
controlled quantity. The method of reference 6 applies to conbtin-
uous linear systems and may therefore be epplied to the system
consldered herein.

Development of Control Functions

From reference 6, & general control configuration is assumed
and is shown in schematic form in figure 2. The engine and the

- —- - e v e = s b e e = e 1 & —— e = Siup e -
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control are ropresented as matrices, where the E's ,and C's are
engine and control matrix elements, respectively. The input to a
metrix box multiplies every element in its column. Any output 1s
the sum of products in its row. The control system is generalized
to this extent: (1) Two dependent engine variasbles (N and Tp)
are to be controlled and one independent variable (Fy) is to be
controlled; (2) the control system employs negative feedback in
which errors are applied to the control; and (3) each error is to
affect every independent variable.

It is useful to use the following algebralc equations for the
system of figure 2:

AY .
EJ- = Z EJk.Xk where J = 1, 2

AX: A A AX. AX
—IE = i ck-v.' —& - ';II' 4 G'k 3° —5 - —§" vwhere k= 1,2,5
Xy Iy s Yy X3 8 X3

V=l
(31)
The variebles in equations (31) have been placed in & form

consistent with the preceding development. The general variables
in equations (31), in terms of engine variables, are

o R S ) (éﬁ) . ez)a
T, § X, &, Y Jg \T
Iz Tz xa A Ya 8 TZ 8
X3 Ty X3 /s Fe /s
and
a8
11 7 o 12 * tp41 TDHL
T1D41 TD+l TZD+L

2=y L P2 Topy bz Festipy U

t

qQENra
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It can be seen that the first of equations (31) is simply
equations (3) and (4) written in coampact form. The second of egua-
tions (31) leads to the following equations:

AT { AT AT, AF. AF
__°.=cll .A.E) AN e—8) - =2 +C'yz __t)-_.'.b.
Fe A N /8 N Tz s T2 Ft (o) F‘b

7 y AT AT, |
A, (-45 - AF +022(-—-2-) -2 +c'23(—
\® W \T2 /s T2 \

kPN 11 AN 1 I T Y ‘_A_Fl) B
By  L|\§ N TN\ s T | B\R s R
- - - - - -/

(32)

The conditions (as. obtained from reference 8) on the controls
to attain the noninteraction conditions specified are as follows:

For a setting of N or Tz to have no effect on Fy, equa-
tion (172) in reference 6 gives \

Czy = Czp = 0

for a setting of N to affect N only, equation (19) in refer-
ence 6 glves

for a setting of Ty to affect T, only, eguation (19) in refer-
ence 6 gives

and for a setting of Fy to affect Fy only, equation (2¢) in
reference 6 and eguations (6), (20), and (24) herein give

C'15 _ _ E1sPee-PioFes
C'z3 Eq1Epp-EypEny

C'2z  Byi3F21-Ey3Fp3

=0 or 0'13=0

8.3
C'zz  EqyEpp-EyoFpy ap

(3)
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Tt will be noted that the last of equations (33) is the ached-
ule in equation (29). For convenience, the comtrol matrix is
redrawn in figure 3.

Controlled response action. - The preceding noninteraction
conditions (equations (33)) glve the required ratios between the
elements of any column of the control matrix (fig. 3). In order
to complete the analysis, it remains to choose any one element in
each column. There is & freedom of independently choosing the
response of each controlled variable to 1ts corresponding setting.
Any controller in the first column will determine engine-speed
response; any ocontroller in the second column will determine tem-
perature response; and any controller in the third column will
determine tail-pipe-burner fuel-flow response. .The control func-
tlons can be determined from desired response whereln the response
functions # are defined as the response of the controlled vari-
eble to its setting. The response functions are therefore

s R (ATZ)
————— g 0| =wmcnw ° 3 4'
T 22 "\g, ), (34)

Tt follows from reference 6 (equations (36) and (37)) and
equation (6) presented herein that the comtrol functions in terms
of the desired rosponse and the engine characteristics are

1-R1y E1Bo2-Bio¥1  1-&, 81bz-92h1
%22 Eyp 222 ey
012.= E E ] — b D & (35)
1-R o, F12F21- Bz 1-2,, SP1 b2
1
ot w235
33 1_9!33
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The remaining control functions for noninteraction conditions
are determined from equations (33) presented herein. It therefore
is theoretically possible to choose any desired response character-
istics and to solve for the required control functions to achieve
this response. .

Analytical results applied to controls. - If the relations .
presented in equations (20) and (24) are combined with the control
functlons as determined from equations (33) and (35), the follow-
ing equations for the control functions result:

011= Wa' (TzD-l-l) w
. ~#17
%11 by
Cpy=- == W * (T.D+l)
b a I
-
1-%,, Jo g
) (36)
o Rpp Hp 8,
22= " T
1-Rap 7o %2
RX'zz 23
Cloz= =~
23
1-#'5; 2
o Z'33
3% T
~*' 33

J

Equations (36) give the conbtrol functions in terms of the
desired response and the coefficients, the time constents » and the
steady-state engine data previously discussed. The desired response
functions (%yy through R'33) are dictated by the engine con-
trol requirements and are chosen by the control designer to fulfill
these requirements. Equations (36) show that if the response func-
tions are chosen, all of the control functions, with the exception
of Cp;, will be determined from steady-state englne data. The

,determination of either Ty or T is required to obtain the con-

trol function 02-1. T
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ITllustrative control. - As an illustration of the method of
determination of the control function, let the response of engine

1
speed setting #17 de 7570’ the response of temperature to

temperature setting be I 1 , and the response of tall.~pipe fuel

£1ow to a setting of tall-pipe and fusl flow, be —=—, Therefore,
for example, 1+55D

A1y 1

1-%,; 1P

The control functions (eguations (36)) then become

T
cll= wa! ._2.. (1 4 _]_'_) W

T2D

by T1( 1
Cpr=-Wg' o—==|1+-%
1 a 'bzal T1D

H 1
%12° £ 55 &
37
Cppm -2 oL L 1)
Hy a3 8D
a
Cloge mas =
25= "o 8D
1
il =

S/

Equations (37) are the control functions required to give the
first-order responses chosen. As has been previously explained,
ell of the control functions are determined from steady~state
engine data, with the exception of Cpy. a

The form of the regquired control functions is given directly
in equations (37). The control C;;, for example, which is the
response of engine fuel flow to an eng:Lne-speed. exror (fig. 2), is
a proportional-plus-integral control with the gain of the propor-
tional element equal to

1364
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T
-T2
Wy' 2
83

and the galin of the integral element equal o

1
W' =
8.51

The control Cgy, which is the response of exhaust-nozzle area to
an error in engine speed, 1s also a proportional-plus-integral con-
trol, with the gains on these elemsnts determined as for Ci;. It
1s noted that the gain on the integral element of this control can
be found from steady-state data, but that determination of the gain
on the proportional element requires a knowledge of the engine

time constant Tj. The remaining control fumctions- (Cyz, Opp,
C'pz, and C'zz) are shown to be integral controls with gains as
determined in eq_ua‘bions (37).

SUMMARY OF RESULTS

The general form of engine transfer functions for a turbojet
engine with tail-plpe burning was developed and reletions among
the coefficients and the times congtants in these functions were
found from the transfer functions and from engine thermodynamics.

1. By use of the developed relations it was shown that:

() The dominant dynamic characteristics of a turbojet engine
with tall-pipe buwrning can be found from steady-state data and ons
transient relation,

(b) The transfer function that related engine speed to changes
in engine fuel flow and turbine-outlet temperature is determined
from steady-state operating data.

2. The transfer functions, when analyzed to determine indicial
regponse characteristics, showed that, if a step change in engine
fuel flow causes the inltlal value of turbine-oubtlet temperature
to be greater than the final value, & step change in either
exheust-nozzle areas or tall-plipe-burner fuel flow will cause the
initial value of turbine-outlet temperature to be less than the
final valus, and conversely.
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1
3. The results of the analysis, when applied to scheduled
controls, gave:

(a) A relation between exhaust-nozzle area and tail-
pipe~-burner fuel flow that maintains constant engine speed
and. temperature over a range of tall-pipe-burmner operation

(b) A relation between engine fuel flow and turbine-
outlet temperaturé that malntains constant engine speed.

over a range of exhaust-nozzle area

4, The results when applied to the design of a closed-loop
noninteracting control system gave the form of all the conbtrol
functions and a solution in terms of steady-state data
for six of the seven required conbtrol functions.

Lewls Flight Propulsion Laboratory,
National Advisory Committee for Aerona.utics ’
Cleveland, Ohio, March 29, 1950.
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APPENDIX A

SYMBOLS
The following symbols are used in this report:

A effective exhaust-nozzle arsa

a.l,az,as,} engine coefficients

by,b2,b3

c control function to which engine-dependent-variable
errors are applied

c? control function to which engine-independent-véz‘ia.ble
errors are applied

[ ' general coefficlent

D difPerential operator, ‘%

B engine-characteristic function

Fo engine fuel flow in energy umits per wmit time

Fg tall-pipe fuel flow in energy' units per wmit time

FSVW general functions

acceleration due to gravity

total enthalpy per pound of air flow

heat added by tail-pipe~burner fuel flow per pound
of alr flow .

egimtdhim

I ' polar moment of inertia of engine rotor -

K; ,K2,K3,K4 coefficients

M . Mech mumber at exhaust-nozzle throat

heat added by engine fuel flow per pound of air flow .
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=4

H

Q 8 o o

a,fB

Y

8y,82,83.

T, 7,T2,T3
Subscripts:
1l

2

NACA TN 2183

function of Mach number
engine rotor speed
total pressure

static pressure
unbalanced engine torgue
ges constant

response function for controlled engine dependent
variable

response functlon for controlled engine independent
variable

total temperature

static temperature

alr flow

engine independent variable
ongine dependent variable
general engine time constants
ratio of gpecific heats

control time constants

engine time constants

compressor inlet (fig. 4)
turbine exit (fig. 4)

exhaust-nozzle throat (fig. 4)

engine

1364
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e m e m e ey ———

flnal value
initlal value
indices

set value

“tail ,pipe

a7

———— - -
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APPERDIX B

DETATIS- OF DEVELOPMENT
Algebraic Derivation of Response Equations

1364

Engine speed. - The basic equations used in this development

are
Q = #(N, Fo, A, Ft) (1)
) an a _~
Q=IZ= E‘E(NNO) (1)

If Np is the initial steady-state englne speed, eguation (Bl),
in operatlonal form, is

Q = I D(AN) (2)

where AN 1is an incremental change in engine speed. Equation (1),
expanded and linearized around steady-state operating points, is

Q =Fy AN +F, Ay +F AL +F 7 “AFy (B2)

vhere &, for example, is (g_Q)F . Eguation (B2), when com~
) o N 0r8sFg
bined with equation (2), yields

ID - F AN = Fp AFe + F4AL + & 3, AFg (B3)

Equation (B3) can be placed in the form

g F
pn) AN Fo C\aF, [ “laa (o v

1}e—=(-

_— — +
Fn N Fy VJF, Fp A Fy VP
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The solution of the homogeneous equation determines the transient
response of the engine to any of the forcing functions. The

term -I/#y has dimensions of time and is the time constant of
the system considered. Thus

I
T= - (B5)
. ¥x
Because eguetion (B4) is linear, the principle of superposition
applies and the response of engine speed to changes in engline fuel
Plow is

'/ Fou F
AW 1 . Fq ° AFg (86)
R  TD+1 g'N N | Fg

and from equilibrium conditions (D—0), it follows that

_ fFe E ) AN/N (37)
g W M [F

which is the slope of a steady-state operating curve relating engine
speed to engine fuel flow at constant A and Fy, oconsidered at
the inltial steady-state operating conditlion. The coefficients of
the remaining terms of equation (B4) can be shown to be related to
the slope of steady-state operating curves in the manner shown by
equation (B7). Equation (B4), solved for the response of engine
speed, then becomes

am _ %1 Mo %2 an % My

= = 3
N TD+1Fy TD+l A  TD+l Fy ()

Turbine-outlet temperature or other variables. - The response
of any other engine variasble, such as turbine~-outlet temperature, .
wlll be of a form of the sum of effects due to changes in .the inde-
pendent veriahles. ‘The response of turbine-outlet temperature to
changes in the independent variables may be found in the following
manner: From the hypothesis presented in reference 1, it follows
that

Q= y(N) T2, A, Fg) (38)
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and in a mammer similar to that used to obtain eguation (B3), equa-
tion (B8) becomes

Q:D-yN)AN= .V‘EEZATZ ‘ (B9)

where AA = AFy = O.

Equation (B3), with AA and APy equal to zero, becomes

(In-f)wg.sr AF, (B10)
N Fo

Equetions (BS) anmi (B10), divided by one another to eliminate

AN and solved for the response of temperature to changes in engine
fuel flow, give

D- yN %e

D-Zx ymz

AT, = AFq (B11)

’

Fromp the development of eguation (3), it follows that equation (B1l)
is of the form

AT, 7D+l AF

[}
T, - D "L, (812)
wvhere
' I
T I3 e s
1
Iy

and by 1is the slope of the steady-state relaetion between T
andl Fg at constant A and Fg. The response of Tz to changes
in A and F; cen be found in a similar manner.

The response of any variable to changes in the independent

' variables cen be found in & manmer similar to that described for Tp.

The procedure> for obtaining these expressions can be summarized in
the following memmer: Expressions for umbalanced torgue as a func-
tlon of the independent variables are written in' which the depend.~
ent varisble for which the response is desired is successively sub-
stituted for each iniependent varieble. These expressions are
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Q = (T, ¥, A, Fy)

Q=9(N, ¥, A, Fg)
(B13)

Q= W, F,, Y, Fy)
Q= ¥(H, Fo, 4, Y)

where Y I1s any dependent variable,

These expressions for unbalenced torgque are then expanded in
& manner gimilar to that previously described and placed in a form
similar to that of equations (BY9) and (B10). The process used to
obtain equation (B12) is then repeated. By thils procedure the
response of any varilable to changes in the independent variables
1s obtalned.

The responses of engine speed and turbine-outlet temperature
are ]
-AE - al AFB + az é—A'- + —-3'3 A-E.E. - (3)
N "TD+1Fy, ™+l A TD+l Fy

AT,  TiD+1 AF,  ToD+l A A’ TzD+1 AFy
= bl + bz -+ b3 (4)
To TD+1 Fe TD+l A TD+1 By

where aj through b3 are slopes of steady-state relations among
the variables and T through Tz are transient relations.

Relations amohg coefflcients and time constants. - Relations
among the coefficients and the time constants in equations (3)
and (4) cen be obtained by solving these eguations for equilibrim
conditions and for the response of the dependent variables to step
changes in the independent variables. Equillbrium conditions can
be found by allowing D +to approach zero in equations (3) and (4).
These equatlions then become

ARp AFg AA AFy,

T:a]_;e—+az—-£+a3£:- (B14)
AT AF AF.

2,F e AA t
—_—2 =) — e —_— 4+ bg ~— 15
T, lr, b2 ot s (15)
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and for step changes in the independent varisbles in equations (3)
and (4), the initial changes in the dependent variables are obtained
from equations (3) and (4) by allowing D +to approach infinity.

AN.
1

—= 0 Bl6
5 (B16)
AT T AF T T AF.
Tp T Fe T A T F

An equation similar to egquation (B2) can be developed for the
response of Tp +to changes in N, Fgo, A, and Fy; by substi-
tuting AT for Q in eguation (1). This function expanded ani
linearized around steady-state operating points is

AF AA ARy
1 25, Sy tME (818)

Equation (B18) is general and holds for equilibrium conditlons and
for the response of T2 %o step changes in the lndependent
varliables.

If equations (Bl4) and (B1S) are combined with equation (B18)
to eliminate AN/N and AT, To, the relation for final condltions is

(b-a.K)e-Fi-i-('b-azK)A—A-+(b-a3K)AF+‘=K2AF°+K-—-K-——
1-eify) & z-22k1) o+ (bs-asky) o y, "R NE,

(B19)

and in a similar manner, from equetions (B16) and (Bl7), the rela-
tion for initial response is

T AF T T AT AF AF
1 ] 2 AA 3 t e AA t
TPy tr eyt Ry tS TR

(B20)

The right sides of equations (B19) and .(B20) are identical and
therefore the coefficients on simllar terms of the left sides are
equal. If the coefficients on corresponiing terms are set equal
to one another and solved for Kj, the Pollowing relations among
the terms in equations (3) and (4) result:

-~
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b b b: ’
;i- (Tl- 1) = ;2 (Tz-T) = ;:- (T3-T) (6)

Thermodynamlc Equations

Engine heat balence. - The engine-heat~balance eguation for
nonequilibrium operating comditions follows directly by equating
unbalanced torgue tlimes englne speed to the dlfference between tur-
bine and compressor power. If alr flow is assumed egqual to gas
flow, the resultant expression is

Fo am
H = —= &= 4 - H- 7
° i, w, T ()

Equation (7) differentiated with Hy constant is

ar P, aw, aw,
W, Wy W, Wy W, W, Wa_

For deviatlion around steady-state conditlons, the differentials in
the equation are differential deviations from steady-state condi-
tions and the remaining quantitles are -values of the variables at
the initlal steady-state condition. If deviations from steady~
state conditlions are considered (Q = 0), equation (B21) with
speciflc heat assumed constant reduces to

ar ay, H, 4T
.__.9.___3.'=.;1!_(1Q.-.._2__% (20)
F, Wy F E T,

Equation (10), placed in linear form by comsidering incremental
changes in the variables, is

AF AW, Hp AT
__e____a._::lAq_'__Z___Z_ (14)
Fg W, F Hy Tp

In this equation, AQ i1s the difference between final and
initial unbalanced torque and because lnitiasl conditions are steady
state, AQ is equal to Q.
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Response of N to F, and Tp. - The response of N to Fy
and T; can be deveioped from equation (10) if it is assumed that
the engine has an axial-flow compressor. The relation between Wy
and N for such an engine is

AWy AN
—2 -yt 8%
a & N

If this substitution is made in equation (14) and the expres-
sion for Q glven by egquation (2) is also substituted, Q and
AW, /W, can be eliminated fram equation (14) to give the following

expression
' AF, AT
1. 0 _p)am_ 1 (8 Bz 4T (822)
Fe wa N W' \F, Hy Tp

In equation (B22) the factor INZ/F, W,' is the engine time
constant at constant T, and F,. Because nelther A nor Py
is involved in this development, 1t follows that either of the
restrictions that Fy I1s constant or A 1is constent can be placed
in this definition and therefore

(20)

T =Ty =
3
2 Fe Wa'

Equation (B22) solved for the response of N +to changes in
Fg or T, becomes

aw__1_ &_EE&).}_ )
N T2D+l

Differentiation and linearization of nozzle equation. - From
continulty of flow it follows that
Lk e ()

,\/1;_3- R
7z8

Logarithmic differentiation of equation (9) with A/-2_ con-~
sldered constant gives R

Wy =

1364
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daw dp at
—a__3. 48 aM 1773 (B23)
Wa D3 A M 2tg

but

tx Tz ¥~ M
3 3
1+-2—Mz
2
also '
s
751 21-73
D5 = P3 |l + 5N

which differentiated and solved for dM/M is

Yz=1
aM (‘11’3 dPs) R
M \F; 7 7o

Tf the expressions for dtz/tz and dM/M are substituted in
equation (323), the following expression results

aw dp d 4P a .
e _4da 3-lT3.,. 3 _Bs\|1/1 _, (13)
We A P, 2T \Ps  PBs )|73\i2
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Figure 2. - Controlled-engine-system configuration.
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